最近打的新春赛,在此记录一下比赛过程

train.py

import tensorflow_datasets as tfds
from tensorflow import keras
import tensorflow as tf
from tensorflow.keras import Sequential, layers
import numpy as np
import pandas as pd

tf.random.set_seed(22)
np.random.seed(33)

def load_data():
    train_data = pd.read_csv('preprocess_train.csv').to_numpy()
    return train_data[:, 1].astype(np.str), train_data[:, 0].astype(np.int32)

# 1 is ham and 0 is spam
x, y = load_data()
print('训练数据加载完成.')

max_review_len = 80
embedding_len = 100
units = 64

# preprocess (create encoder)
encoder = tfds.features.text.TokenTextEncoder.load_from_file('lib')
vocab_size = encoder.vocab_size
print('单词编码表加载完成.')

# tokenizer = tfds.features.text.Tokenizer()
# vocabulary_set = set()
# for text in x:
#     some_tokens = tokenizer.tokenize(text)
#     vocabulary_set.update(some_tokens)
#
# encoder = tfds.features.text.TokenTextEncoder(vocabulary_set)
# vocab_size = encoder.vocab_size
# encoder.save_to_file('lib')

def encode(text_tensor, label):
    encoded_text = encoder.encode(text_tensor.numpy())
    encoded_text = keras.preprocessing.sequence.pad_sequences([encoded_text], maxlen=max_review_len)
    return encoded_text[0], label

def encode_map_fn(text, label):
    # py_func doesn't set the shape of the returned tensors.
    encoded_text, label = tf.py_function(encode,
                                         inp=[text, label],
                                         Tout=(tf.int32, tf.int32))
    # `tf.data.Datasets` work best if all components have a shape set
    #  so set the shapes manually:
    encoded_text.set_shape([max_review_len])
    label.set_shape([])

    return encoded_text, label

db = tf.data.Dataset.from_tensor_slices((x, y)).map(encode_map_fn).shuffle(10000).batch(32, drop_remainder=True)

model = Sequential([
    layers.Embedding(vocab_size + 10, embedding_len, input_length=max_review_len),
    layers.LSTM(units, dropout=0.5, return_sequences=True, unroll=True),
    layers.LSTM(units, dropout=0.5, unroll=True),
    layers.Dense(1, activation=tf.sigmoid)
])

model.compile(optimizer=keras.optimizers.Adam(0.001),
              loss=tf.losses.BinaryCrossentropy(),
              metrics=['accuracy'])

model.summary()

print('模型构建完毕,训练开始.')

model.fit(db, epochs=5)

model.save_weights('ckpt/weights.ckpt')

print('训练完毕,模型已保存.')

test.py

import tensorflow_datasets as tfds
from tensorflow import keras
import tensorflow as tf
from tensorflow.keras import Sequential, layers
import numpy as np
import pandas as pd

def load_data():
    test_data = pd.read_csv('preprocess_test.csv').to_numpy()
    return test_data[:, 1].astype(np.str), test_data[:, 0].astype(np.int32)

# 1 is ham and 0 is spam
x_test, y_test = load_data()

max_review_len = 80
embedding_len = 100
units = 64

# preprocess (create encoder)
encoder = tfds.features.text.TokenTextEncoder.load_from_file('lib')
vocab_size = encoder.vocab_size
print('单词编码表加载完成.')

def encode(text_tensor, label):
    encoded_text = encoder.encode(text_tensor.numpy())
    encoded_text = keras.preprocessing.sequence.pad_sequences([encoded_text], maxlen=max_review_len)
    return encoded_text[0], label

def encode_map_fn(text, label):
    # py_func doesn't set the shape of the returned tensors.
    encoded_text, label = tf.py_function(encode,
                                         inp=[text, label],
                                         Tout=(tf.int32, tf.int32))
    # `tf.data.Datasets` work best if all components have a shape set
    #  so set the shapes manually:
    encoded_text.set_shape([max_review_len])
    label.set_shape([])

    return encoded_text, label

db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test)).map(encode_map_fn).batch(32, drop_remainder=True)

print('模型加载中...')
model = Sequential([
    layers.Embedding(vocab_size + 10, embedding_len, input_length=max_review_len),
    layers.LSTM(units, dropout=0.5, return_sequences=True, unroll=True),
    layers.LSTM(units, dropout=0.5, unroll=True),
    layers.Dense(1, activation=tf.sigmoid)
])
model.compile(optimizer=keras.optimizers.Adam(0.001),
              loss=tf.losses.BinaryCrossentropy(),
              metrics=['accuracy'])
model.load_weights('ckpt/weights.ckpt')
print('模型加载完成.')

score = model.evaluate(db_test)

print('测试结束,准确率:', score[1])

predict.py

import tensorflow_datasets as tfds
from tensorflow import keras
from tensorflow.keras import Sequential, layers
import tensorflow as tf

# 待预测文件路径
file_path = 'data/test.txt'

max_review_len = 80
embedding_len = 100
units = 64

# preprocess (create encoder)
encoder = tfds.features.text.TokenTextEncoder.load_from_file('lib')
vocab_size = encoder.vocab_size
print('单词编码表加载完成.')

x = []
data = open(file_path, 'r').read().split('\n')
for i in data:
    x.append(encoder.encode(i.lower()))
x = keras.preprocessing.sequence.pad_sequences(x, maxlen=max_review_len)
print('数据加载完成')

print('模型加载中...')
model = Sequential([
    layers.Embedding(vocab_size + 10, embedding_len, input_length=max_review_len),
    layers.LSTM(units, dropout=0.5, return_sequences=True, unroll=True),
    layers.LSTM(units, dropout=0.5, unroll=True),
    layers.Dense(1, activation=tf.sigmoid)
])
model.compile(optimizer=keras.optimizers.Adam(0.001),
              loss=tf.losses.BinaryCrossentropy(),
              metrics=['accuracy'])
model.load_weights('ckpt/weights.ckpt')
print('模型加载完成,预测中...')

pred = model.predict(x)

print('预测完成,概率写入中...')

fp = open('predict_result.txt', 'w')
for i in pred:
    fp.write('%f\n' % (1 - i))

print('概率写入完成.')
Last modification:May 31, 2022
如果觉得我的文章对你有用,请随意赞赏